Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR signaling is a determinant of cell survival in response to DNA damage.

Identifieur interne : 001676 ( Main/Exploration ); précédent : 001675; suivant : 001677

TOR signaling is a determinant of cell survival in response to DNA damage.

Auteurs : Changxian Shen [États-Unis] ; Cynthia S. Lancaster ; Bin Shi ; Hong Guo ; Padma Thimmaiah ; Mary-Ann Bjornsti

Source :

RBID : pubmed:17698581

Descripteurs français

English descriptors

Abstract

The conserved TOR (target of rapamycin) kinase is part of a TORC1 complex that regulates cellular responses to environmental stress, such as amino acid starvation and hypoxia. Dysregulation of Akt-TOR signaling has also been linked to the genesis of cancer, and thus, this pathway presents potential targets for cancer chemotherapeutics. Here we report that rapamycin-sensitive TORC1 signaling is required for the S-phase progression and viability of yeast cells in response to genotoxic stress. In the presence of the DNA-damaging agent methyl methanesulfonate (MMS), TOR-dependent cell survival required a functional S-phase checkpoint. Rapamycin inhibition of TORC1 signaling suppressed the Rad53 checkpoint-mediated induction of ribonucleotide reductase subunits Rnr1 and Rnr3, thereby abrogating MMS-induced mutagenesis and enhancing cell lethality. Moreover, cells deleted for RNR3 were hypersensitive to rapamycin plus MMS, providing the first demonstration that Rnr3 contributes to the survival of cells exposed to DNA damage. Our findings support a model whereby TORC1 acts as a survival pathway in response to genotoxic stress by maintaining the deoxynucleoside triphosphate pools necessary for error-prone translesion DNA polymerases. Thus, TOR-dependent cell survival in response to DNA-damaging agents coincides with increased mutation rates, which may contribute to the acquisition of chemotherapeutic drug resistance.

DOI: 10.1128/MCB.00290-07
PubMed: 17698581
PubMed Central: PMC2168917


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR signaling is a determinant of cell survival in response to DNA damage.</title>
<author>
<name sortKey="Shen, Changxian" sort="Shen, Changxian" uniqKey="Shen C" first="Changxian" last="Shen">Changxian Shen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lancaster, Cynthia S" sort="Lancaster, Cynthia S" uniqKey="Lancaster C" first="Cynthia S" last="Lancaster">Cynthia S. Lancaster</name>
</author>
<author>
<name sortKey="Shi, Bin" sort="Shi, Bin" uniqKey="Shi B" first="Bin" last="Shi">Bin Shi</name>
</author>
<author>
<name sortKey="Guo, Hong" sort="Guo, Hong" uniqKey="Guo H" first="Hong" last="Guo">Hong Guo</name>
</author>
<author>
<name sortKey="Thimmaiah, Padma" sort="Thimmaiah, Padma" uniqKey="Thimmaiah P" first="Padma" last="Thimmaiah">Padma Thimmaiah</name>
</author>
<author>
<name sortKey="Bjornsti, Mary Ann" sort="Bjornsti, Mary Ann" uniqKey="Bjornsti M" first="Mary-Ann" last="Bjornsti">Mary-Ann Bjornsti</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17698581</idno>
<idno type="pmid">17698581</idno>
<idno type="doi">10.1128/MCB.00290-07</idno>
<idno type="pmc">PMC2168917</idno>
<idno type="wicri:Area/Main/Corpus">001680</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001680</idno>
<idno type="wicri:Area/Main/Curation">001680</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001680</idno>
<idno type="wicri:Area/Main/Exploration">001680</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR signaling is a determinant of cell survival in response to DNA damage.</title>
<author>
<name sortKey="Shen, Changxian" sort="Shen, Changxian" uniqKey="Shen C" first="Changxian" last="Shen">Changxian Shen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lancaster, Cynthia S" sort="Lancaster, Cynthia S" uniqKey="Lancaster C" first="Cynthia S" last="Lancaster">Cynthia S. Lancaster</name>
</author>
<author>
<name sortKey="Shi, Bin" sort="Shi, Bin" uniqKey="Shi B" first="Bin" last="Shi">Bin Shi</name>
</author>
<author>
<name sortKey="Guo, Hong" sort="Guo, Hong" uniqKey="Guo H" first="Hong" last="Guo">Hong Guo</name>
</author>
<author>
<name sortKey="Thimmaiah, Padma" sort="Thimmaiah, Padma" uniqKey="Thimmaiah P" first="Padma" last="Thimmaiah">Padma Thimmaiah</name>
</author>
<author>
<name sortKey="Bjornsti, Mary Ann" sort="Bjornsti, Mary Ann" uniqKey="Bjornsti M" first="Mary-Ann" last="Bjornsti">Mary-Ann Bjornsti</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult (MeSH)</term>
<term>Cell Cycle Proteins (genetics)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Cell Survival (MeSH)</term>
<term>Checkpoint Kinase 2 (MeSH)</term>
<term>Cycloheximide (metabolism)</term>
<term>DNA Damage (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Methyl Methanesulfonate (metabolism)</term>
<term>Multiprotein Complexes (MeSH)</term>
<term>Mutagens (metabolism)</term>
<term>Protein Subunits (genetics)</term>
<term>Protein Subunits (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Ribonucleoside Diphosphate Reductase (genetics)</term>
<term>Ribonucleoside Diphosphate Reductase (metabolism)</term>
<term>S Phase (physiology)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Sirolimus (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte (MeSH)</term>
<term>Altération de l'ADN (MeSH)</term>
<term>Checkpoint kinase 2 (MeSH)</term>
<term>Complexes multiprotéiques (MeSH)</term>
<term>Cycloheximide (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mutagènes (métabolisme)</term>
<term>Méthanesulfonate de méthyle (métabolisme)</term>
<term>Phase S (physiologie)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du cycle cellulaire (génétique)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Ribonucleoside diphosphate reductase (génétique)</term>
<term>Ribonucleoside diphosphate reductase (métabolisme)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (métabolisme)</term>
<term>Sous-unités de protéines (génétique)</term>
<term>Sous-unités de protéines (métabolisme)</term>
<term>Survie cellulaire (MeSH)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Protein Subunits</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Ribonucleoside Diphosphate Reductase</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Cycloheximide</term>
<term>Methyl Methanesulfonate</term>
<term>Mutagens</term>
<term>Protein Subunits</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Ribonucleoside Diphosphate Reductase</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sirolimus</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Ribonucleoside diphosphate reductase</term>
<term>Saccharomyces cerevisiae</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cycloheximide</term>
<term>Facteurs de transcription</term>
<term>Mutagènes</term>
<term>Méthanesulfonate de méthyle</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Ribonucleoside diphosphate reductase</term>
<term>Saccharomyces cerevisiae</term>
<term>Sirolimus</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phase S</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>S Phase</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Cell Survival</term>
<term>Checkpoint Kinase 2</term>
<term>DNA Damage</term>
<term>Humans</term>
<term>Multiprotein Complexes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Altération de l'ADN</term>
<term>Checkpoint kinase 2</term>
<term>Complexes multiprotéiques</term>
<term>Humains</term>
<term>Survie cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The conserved TOR (target of rapamycin) kinase is part of a TORC1 complex that regulates cellular responses to environmental stress, such as amino acid starvation and hypoxia. Dysregulation of Akt-TOR signaling has also been linked to the genesis of cancer, and thus, this pathway presents potential targets for cancer chemotherapeutics. Here we report that rapamycin-sensitive TORC1 signaling is required for the S-phase progression and viability of yeast cells in response to genotoxic stress. In the presence of the DNA-damaging agent methyl methanesulfonate (MMS), TOR-dependent cell survival required a functional S-phase checkpoint. Rapamycin inhibition of TORC1 signaling suppressed the Rad53 checkpoint-mediated induction of ribonucleotide reductase subunits Rnr1 and Rnr3, thereby abrogating MMS-induced mutagenesis and enhancing cell lethality. Moreover, cells deleted for RNR3 were hypersensitive to rapamycin plus MMS, providing the first demonstration that Rnr3 contributes to the survival of cells exposed to DNA damage. Our findings support a model whereby TORC1 acts as a survival pathway in response to genotoxic stress by maintaining the deoxynucleoside triphosphate pools necessary for error-prone translesion DNA polymerases. Thus, TOR-dependent cell survival in response to DNA-damaging agents coincides with increased mutation rates, which may contribute to the acquisition of chemotherapeutic drug resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17698581</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>02</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>27</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2007</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR signaling is a determinant of cell survival in response to DNA damage.</ArticleTitle>
<Pagination>
<MedlinePgn>7007-17</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The conserved TOR (target of rapamycin) kinase is part of a TORC1 complex that regulates cellular responses to environmental stress, such as amino acid starvation and hypoxia. Dysregulation of Akt-TOR signaling has also been linked to the genesis of cancer, and thus, this pathway presents potential targets for cancer chemotherapeutics. Here we report that rapamycin-sensitive TORC1 signaling is required for the S-phase progression and viability of yeast cells in response to genotoxic stress. In the presence of the DNA-damaging agent methyl methanesulfonate (MMS), TOR-dependent cell survival required a functional S-phase checkpoint. Rapamycin inhibition of TORC1 signaling suppressed the Rad53 checkpoint-mediated induction of ribonucleotide reductase subunits Rnr1 and Rnr3, thereby abrogating MMS-induced mutagenesis and enhancing cell lethality. Moreover, cells deleted for RNR3 were hypersensitive to rapamycin plus MMS, providing the first demonstration that Rnr3 contributes to the survival of cells exposed to DNA damage. Our findings support a model whereby TORC1 acts as a survival pathway in response to genotoxic stress by maintaining the deoxynucleoside triphosphate pools necessary for error-prone translesion DNA polymerases. Thus, TOR-dependent cell survival in response to DNA-damaging agents coincides with increased mutation rates, which may contribute to the acquisition of chemotherapeutic drug resistance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Changxian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lancaster</LastName>
<ForeName>Cynthia S</ForeName>
<Initials>CS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thimmaiah</LastName>
<ForeName>Padma</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bjornsti</LastName>
<ForeName>Mary-Ann</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 CA023099</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA021765</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA21765</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA23099</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>08</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009153">Mutagens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98600C0908</RegistryNumber>
<NameOfSubstance UI="D003513">Cycloheximide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AT5C31J09G</RegistryNumber>
<NameOfSubstance UI="D008741">Methyl Methanesulfonate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.1</RegistryNumber>
<NameOfSubstance UI="C517042">RNR3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.1</RegistryNumber>
<NameOfSubstance UI="D012262">Ribonucleoside Diphosphate Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.11</RegistryNumber>
<NameOfSubstance UI="D064447">Checkpoint Kinase 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.1</RegistryNumber>
<NameOfSubstance UI="C067022">RAD53 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="Y">Cell Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064447" MajorTopicYN="N">Checkpoint Kinase 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003513" MajorTopicYN="N">Cycloheximide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004249" MajorTopicYN="Y">DNA Damage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008741" MajorTopicYN="N">Methyl Methanesulfonate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009153" MajorTopicYN="N">Mutagens</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012262" MajorTopicYN="N">Ribonucleoside Diphosphate Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016196" MajorTopicYN="N">S Phase</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17698581</ArticleId>
<ArticleId IdType="pii">MCB.00290-07</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.00290-07</ArticleId>
<ArticleId IdType="pmc">PMC2168917</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):537-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2002 Nov;12(11):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2003 Nov;4(5):343-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14667501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12(6):1499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Mar 10;23(5):1188-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2004 May;4(5):335-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 May 14;279(20):21271-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Jun 1;1699(1-2):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2004 Jun;5(6):519-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15193254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2004 Aug-Sep;3(8-9):883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Aug 15;18(16):1926-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1990 May;4(5):740-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2199320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jul;11(7):3691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2046672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Apr 8;141(1):133-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8163165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1995 May 1;55(9):1982-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7728769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Aug;2(2):173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9734354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Sep 4;94(5):595-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9741624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10500195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Mar;69(1):79-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Apr;17(2):158-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Mar 25;120(6):747-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 7;112(3):391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 May;11(5):1323-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12769855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6628-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Aug 28;424(6952):1078-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12944972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Aug;26(15):5861-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2779-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Aug 15;19(16):1905-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 24;280(25):23566-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Sep 2;19(5):699-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16137625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Dec;17(6):596-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Dec 15;19(24):3055-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Sep 18;150(6):1507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10995454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 Apr 15;61(8):3373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Aug 2;412(6846):557-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11484058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Jul;8(1):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2001 Nov;3(11):958-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11715016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18574-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Aug 1;16(15):1872-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2002 Oct;2(4):267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12398890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2003 Nov 27;532(1-2):41-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14643428</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bjornsti, Mary Ann" sort="Bjornsti, Mary Ann" uniqKey="Bjornsti M" first="Mary-Ann" last="Bjornsti">Mary-Ann Bjornsti</name>
<name sortKey="Guo, Hong" sort="Guo, Hong" uniqKey="Guo H" first="Hong" last="Guo">Hong Guo</name>
<name sortKey="Lancaster, Cynthia S" sort="Lancaster, Cynthia S" uniqKey="Lancaster C" first="Cynthia S" last="Lancaster">Cynthia S. Lancaster</name>
<name sortKey="Shi, Bin" sort="Shi, Bin" uniqKey="Shi B" first="Bin" last="Shi">Bin Shi</name>
<name sortKey="Thimmaiah, Padma" sort="Thimmaiah, Padma" uniqKey="Thimmaiah P" first="Padma" last="Thimmaiah">Padma Thimmaiah</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Shen, Changxian" sort="Shen, Changxian" uniqKey="Shen C" first="Changxian" last="Shen">Changxian Shen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001676 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001676 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17698581
   |texte=   TOR signaling is a determinant of cell survival in response to DNA damage.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17698581" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020